Lower Semicontinuity of Functionals of Fractional Type and Applications to Nonlocal Equations with Critical Sobolev Exponent
نویسندگان
چکیده
In the present paper we study the weak lower semicontinuity of the functional
منابع مشابه
On fractional impulsive equations of Sobolev type with nonlocal condition in Banach spaces
The objective of this paper is to establish the existence of solutions of nonlinear impulsive fractional integrodifferential equations of Sobolev type with nonlocal condition. The results are obtained by using fractional calculus and fixed point techniques.
متن کاملOn a p(x)-Kirchho equation via variational methods
This paper is concerned with the existence of two non-trivial weak solutions for a p(x)-Kirchho type problem by using the mountain pass theorem of Ambrosetti and Rabinowitz and Ekeland's variational principle and the theory of the variable exponent Sobolev spaces.
متن کاملThe Solvability of Concave-Convex Quasilinear Elliptic Systems Involving $p$-Laplacian and Critical Sobolev Exponent
In this work, we study the existence of non-trivial multiple solutions for a class of quasilinear elliptic systems equipped with concave-convex nonlinearities and critical growth terms in bounded domains. By using the variational method, especially Nehari manifold and Palais-Smale condition, we prove the existence and multiplicity results of positive solutions.
متن کاملLower semicontinuity problems in Sobolev spaces with respect to a measure
For every finite nonnegative measure ft we introduce the Sobolev spaces W^'(Q,K) and we study the lower semicontinuity of functionals of the form where the integrand / is quasiconvex.
متن کاملLower Semicontinuity and Relaxation Via Young Measures for Nonlocal Variational Problems and Applications to Peridynamics
We study nonlocal variational problems in Lp, like those that appear in peridynamics. The functional object of our study is given by a double integral. We establish characterizations of weak lower semicontinuity of the functional in terms of nonlocal versions of either a convexity notion of the integrand, or a Jensen inequality for Young measures. Existence results, obtained through the direct ...
متن کامل